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Heating a salinity gradient from a vertical sidewall: 
nonlinear theory 
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When a body of fluid with a vertical salinity gradient is heated from a vertical 
sidewall instabilities are sometimes observed. The linear stability of this basic state 
has been investigated by Kerr (1989). This linear theory predicts the onset of 
instability well when compared with experimental results; however, the form of the 
observed nonlinear instabilities does not coincide with the linear predictions (cf. 
Chen, Briggs & Wirtz 1971 ; Tsinober & Tanny 1986; Tanny & Tsinober 1988). I n  this 
paper we investigate some of the nonlinear aspects of the problem. A weakly 
nonlinear analysis reveals that the bifurcation into instability is subcritical, and that 
the initial trend along this branch of solutions is towards the co-rotating cells 
observed in experiments. The heating levels for which instabilities are absent are 
investigated by the use of energy stability analysis. This yields a weak result for 
arbitrary disturbances, showing that disturbances will decay for sufficiently low wall 
heating. This bound is greatly strengthened by imposing a vertical periodicity on the 
lengthscale proposed by Chen et al. 

1. Introduction 
When a body of fluid with a vertical salinity gradient is heated from a vertical 

sidewall the fluid may become unstable to thin, almost horizontal instabilities. The 
linear stability of a laterally heated salinity gradient was investigated in Kerr (1989, 
hereinafter referred to as I). This analysis uses a quasi-static approximation based on 
the disparity between the vertical and horizontal lengthscales of the instabilities. It 
was found that the linear theory predicted the onset of the instabilities well; 
however, the form of the instabilities from the experimental observations of Chen, 
Briggs & Wirtz (1971), Tsinober & Tanny (1986), and Tanny & Tsinober (1988) did 
not match up exactly with the form of the instabilities predicted by the linear theory. 
The linear theory, by its very nature, predicts that linear infinitesimal disturbances 
consist of a series of counter-rotating convection cells ; however, in experimental 
observations all the convection cells circulate in the same direction, with the fluid 
rising at  the wall before moving away into the bulk of the fluid where it gradually 
sinks. These instabilities are only visible once they have reached a finite amplitude, 
hence it is evident that nonlinear effects are important in the observations. It is the 
purpose of this paper to examine some of the finite-amplitude aspects of the 
instabilities investigated in I. 

The importance of nonlinearity in observed instabilities also applies to the case of 
vertical and inclined slots that enclose fluid with a vertical salinity gradient when 
subject to lateral heating. Hart (1973) showed that a salinity gradient in a vertical 
slot underwent a subcritical bifurcation when heated. The finite-amplitude form of 
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the instabilities have been investigated numerically by Wirtz, Briggs C Chen (1972) 
and Thangam, Zebib & Chen (1982). The former looked at both a finite vertical slot 
and an infinite vertical slot. In  the latter case the background flow was subjected to 
small random disturbances to the vorticity. The instabilities that evolved consisted 
only of co-rotating convection cells. In  the numerical investigation of Thangam et al. 
the nonlinear evolution of a vertical and sloping infinite slot was investigated. In this 
investigation an initial disturbance of the form of the counter-rotating convection 
cells predicted by linear theory was used. These soon evolved into co-rotating 
convection cells. In both these investigations the heating was supercritical. 

In Q 2 a weakly nonlinear perturbation analysis is performed to find the behaviour 
of the instability near the critical point, using the quasi-static assumption of I. It is 
found that the bifurcation at the point of marginal stability is subcritical, and so 
instabilities whose form is close to that predicted by the linear theory of I may not 
be observed. This situation parallels that found in the weakly nonlinear analysis of 
Hart (1973) of a salinity gradient in a vertical slot subjected to lateral heating. In $ 3  
an energy stability analysis is carried out to determine a lower bound for the degree 
of subcriticality of the instability. This energy stability analysis is of two parts, the 
first part follows the work of Dudis & Davis (1971) in their investigations of a 
buoyancy boundary layer near a vertical wall. In  this analysis there is no restriction 
on the vertical scale of the instabilities and the resultant lower bound on the wall 
heating for the possible existence of subcritical instabilities is weak. In the second 
part of this energy stability analysis an extra constraint is imposed on the vertical 
lengthscale of the instabilities using the scale proposed by Chen et al. (1971). This 
additional constraint produces a much stronger bound on the heating rate for the 
possible existence of subcritical instabilities. 

2. Weakly nonlinear analysis 
In this section we look a t  the effect of nonlinearity on the instabilities observed 

when a semi-infinite body of fluid with a vertical salinity gradient is heated from a 
vertical sidewall for near marginal heating rates. It was found in I that, for strong 
stratification, the non-dimensional parameter that governed the stability of the fluid 
to infinitesimal disturbances was 

(1 - T ) ~  g(aAT)' 
VKs 12( - /3flZ)' ' & =  

where g is the acceleration due to gravity, AT the change of temperature a t  the wall, 
A''~ the vertical salinity gradient, a the coefficient of thermal expansion, p the density 
change due to a unit change in the salinity, 1 = ( K ~  t ) ;  the horizontal lengthscale, v the 
kinematic viscosity, K~ the diffusivity of heat, K~ the diffusivity of salt and T the 
salt/heat diffusivity ratio. The second important non-dimensional parameter is 6, the 
ratio of the vertical lengthscale h = (1  - 7) aAT( --/38z)-1 to the horizontal lengthscale. 
For the analyses to be valid in I and in this section S must be small. There is an 
associated quasi-static assumption discussed in I that if 6 is small then it can be 
considered to be a constant, independent of time. In this paper we shall only consider 
the error-function temperature profile associated with an instantaneous increase of 
the wall temperature of AT at time t = 0. We use this temperature profile as it is the 
large-time asymptotic limit for all changes in wall temperature that are mono- 
tonically increasing with a finite upper bound. 

In this section we look a t  the solutions to the nonlinear governing equations when 
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the heating rate is close to the critical value predicted by the linear theory and the 
amplitude of the disturbance is small. This weakly nonlinear analysis is similar in 
principle to that of Malkus & Veronis (1958) in their investigation of finite-amplitude 
convection between two horizontal surfaces. Hart (1973) also used this technique to 
investigate the behaviour of finite-amplitude disturbances to fluid with a vertical 
salinity gradient contained in a vertical slot with an imposed lateral temperature 
difference between the walls. Hart found that the linear instabilities underwent a 
subcritical bifurcation from the background state. Here we apply the weakly 
nonlinear analysis to the single-sidewall problem to investigate the nature of the 
bifurcation from the background state. 

Using the non-dimensionalizations of I ,  the governing equations for perturbations 
to the background state are 

(2.2b) 

(: - TL) X + S2 m(x) - ax - -- a$af - ( 1  - 7 )  - a$ + J( $, X) = TV; X, ( 2 . 2 ~ )  aZ aZ ax ax 

where the Jacobian 
i3AaB aAaB J(A B )  = ----- ax ax az ax' 

( 2 . 2 4  

and the Prandtl number, g, is defined by v / K T .  I n  these equations $ is the 
perturbation stream function, T and X are the perturbations to the background 
temperature and salinity and f and m are the background temperature profile and 
vertical fluid velocity. 

These are the same non-dimensional governing equations as I but with the 
addition of the nonlinear Jacobian terms. The boundary conditions for this problem 
far from the wall are that all perturbations decay to zero. In  I it was found that, in 
the limit 6-t 0, thin boundary layers developed a t  the wall that only had an effect on 
the stability of the bulk of the fluid to order S2. This turns out to be negligible in the 
range of validity of this weakly nonlinear theory. The appropriate boundary 
conditions that are applied a t  the wall for the required accuracy in this theory are 
that the temperature perturbation T vanishes a t  x = 0 and that there is no fluid flux 
into or out of the wall. 

In this analysis we look a t  the solutions to these equations that have a steady 
amplitude that is, in some sense, small but finite, so that if E is some measure of the 
amplitude (to be defined later) we require that E 4 1. Just as in I we assume that 
d2 4 1 in our calculations, and that in this limit 6 can be taken to be a constant. 

With these assumptions we look for solutions in the limits of small E and 6. We 
expand $, T ,  S in terms of double power series in E and 6. The solutions will be 
periodic in the vertical direction with a period 2 n / m ,  and so we can express the 
vertical z-dependence by splitting the solution into its Fourier modes. In this way we 
express each quantity as the sum of terms which have a z-dependency of the form 
&nmz for n 3 0. The solutions that we are looking for are of constant amplitude and 
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form, moving upwards with a phase velocity of -w/m, and so all the Fourier modes 
are functions of (mz + ot). Hence the time dependency of each of the modes will be 
of the form a/at = irw. We also expand Q and w as double power series in E and 6, and 
so 

(2.3a) 

(2.3b) 

( 2 . 3 ~ )  

(2 .3d)  

(2.3e) 

As E is a measure of the amplitude of the instabilities we have the restriction that, 
for $-, T and S, j 2 1. For Q and o the restriction is that j 2 0. There is no reason a t  
this point to impose any restriction on the possible powers of 6 in these expansions. 
As we are interested only in the real parts of the solutions we have the relation that 

1, (2 .4)  Re {k(x) ein(mt+wt)} = Re {$(x) e-in(mz+wt) 

and hence restrict ourselves to considering the case where n 2 0. 
We substitute these expansions into (2 .1)  and look at the O ( E )  terms. At  this order 

the nonlinear terms do not appear. The resultant equations for the n = 1 mode are 

(2.5b) 

( 2 . 5 ~ )  

This is the same set of equations as found in the linear analysis of I, but this time 
more care must be taken in finding the solution since we are now concerned with the 
amplitude. As these equations are both linear and homogeneous, a solution when 
multiplied by any constant is also a solution. We still have the freedom to choose any 
measure of the amplitude of the instabilities, but different choices will give different 
values of coefficients associated with the nonlinear motions. We make the choice of 
amplitude so that the order-e solution satisfies 

This does not totally remove the degeneracy since any solution when multiplied by 
a complex number with magnitude 1 will also satisfy this criterion. This degeneracy 
is removed by requiring that the derivative of is real and positive a t  x = 0. We 
now define the amplitude, e, of any finite-amplitude solution, $(x, z ,  t ) ,  by 
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We can also define the phase, y ,  of the instability by 

In particular, if we substitute in the expansion (2.3a) for $ we get 

From this we deduce that all higher-order modes with n = 1 are orthogonal to the 
first mode, $:,,. 

The solutions to (2.5) have been found in I, where the marginally stable solution 
was found. The leading-order solution for g = 7 and 7 = 1/80, the approximate 
values for common salt in water, corresponds to the critical solution found there: 

(2.10) 

This solution occurs for the critical value of m = 6.244. Here $crit, !Grit and S,,, are 
the corresponding stream function, temperature perturbation and salinity per- 
turbation renormalized to have unit amplitude. With this value of Q0,, all other 
linear modes with different values of m are stable. Since there are no forcing terms 
a t  this order for any Fourier mode with n $: 1,  this is the only possible non-zero 
solution. 

We now look a t  the O(s2) terms. At this order we get the first influence of the 
nonlinear Jacobian terms. These Jacobian terms force a response in the order-s2 
equations for both the n = 0 and n = 2 modes. There are also forcing terms for the 
n = 1 mode that come from the O(e) terms in the expansions of Q and w .  All other 
modes are stable. We split the O ( 2 )  equations into these three parts and solve them 
separately. 

First we consider the terms with the same vertical periodicity as the first-order 
equations. Using the notation that the absence of the second lower suffix indicates 
that the &dependency has not yet been determined, the leading-order equations for 
this mode are 

I $:,o = $wit, Ti.0 = !Grit, s:,o = Scrit ,  

Q,,, = Qcrit = 147700, o ~ , ~  = merit = 0.6744. 

(iwO,,+m2) Tt-im@;f’(x) = -imlTi,o, (2.1 1 b )  

(io, , ,+~m2)S~-im$~f’(x)- (1 -T)-  d%G - - - i q S ~ , , .  
dx 

(2.1 1 c )  

In  I a solvability condition was derived for sets of equations of this form in order for 
a solution to exist. In I the boundary condition for $ a t  x = 0 was that $ took an 
O(S2) value. Here it is sufficient to set @(0)  = 0, and so the solvability cqndition 
obtained by multiplying (2.1 1) by the respective conjugates of the adjoints $, 9 and 
s^ and integrating the sum of the resultant equations from 0 to 00 is 
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Since both Q1 and o1 are real we can take the real and imaginary parts of this 
equat,ion to give a pair of simultaneous equations €or the two unknowns, obtaining 

(2.13) the trivial solution w1 = Q1 = 0. 

This result is true for all orders of S. This result is to be expected, otherwise the 
nonlinear behaviour would depend on the sign of the amplitude, not just its 
magnitude. However, changing the sign of the solutions is equivalent to  a vertical 
phase shift of the disturbances by half a period, and should have no effect on their 
behaviour. 

Since there is now no forcing to these equations, the only possible solutions are 
multiples of the critical solution found for the first-order equations. However, the 
orthogonality relation between $i,o and all the higher-order modes means that $i,o, 
q,o and Si,o must all be zero. 

Next we look a t  the leading-order equations for the terms proportional to exp 
(2i(mz+wt)): 

( 2 . 1 4 ~ )  Qo, (!! - %) dx = 0, 
0-7 

- (2iw0, + 4vm2) 4m2$i, - - 
(1 -7) 

(2iwO,,+4m2) 2 ’ ~ , 0 - 2 i m $ ~ , 0 ~ ’ ( ~ )  = -;im $;,o%), (2.14b) 

(2 .14~)  

Here the right-hand side represents the forcing from the nonlinear Jacobian terms. 
These equations can be solved numerically in a similar fashion to the O(e) equations 
to find +i,o, Ti,o and AS’:,,. 

Lastly we come to the z- and t-independent terms. I n  the governing equations for 
this mode the a/az and a/at terms all vanish and so the terms with a a2 dependency 
appear a t  leading order : 

(2.1%) 

d -  
(2.15~) - +px - dSt - d27--((1 d2S: -7)- dll.i - - -$m-(+:,oXi,O). 

dx dx2 dx dx 

Equation (2.15b) has the solution 

Note that this term is of order 2S2. In all the other modes, with n + 0, the forcing 
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terms are balanced by vertical diffusion over a lengthscale of the convection cell 
thickness. However, this mode is uniform in the vertical direction and so there is no 
vertical diffusion. The only effects that can balance the forcing terms in this mode are 
the weak horizontal diffusion and advection, both of order S2 weaker than the 
vertical diffusion for modes with n + 0. Since these limiting effects are weak the 
perturbation has to grow to a correspondingly larger amplitude, a factor of order tT2 
larger than would otherwise be the case, before a balance occurs between the driving 
terms in the equations and the balancing effects. 

From (2.15a) we find that, unless @! is of order P,  at leading order the horizontal 
salinity and temperature gradients will balance. As both perturbations decay as 
x+co this gives for the bulk of the fluid 

q,-2 = s;,+. (2.17) 

The salinity does not match up with the appropriate physical salt boundary 
condition and this results in a boundary layer forming with thickness proportional 
to I$ (see $ 5  of I). As mentioned earlier, the effect of this boundary layer is negligible 
in this analysis. 

The last of the three equations, (2.15c), gives the x-independent perturbation to 
the stream function : 

This leading-order z-independent part of the stream function is of order e2 and not 
of order e 2 F 2 .  

We now look a t  the O ( 2 )  equations. This time the Jacobian terms give a forcing 
to the n = 1 mode and the n = 3 mode. The equations for the terms proportional to 
exp (i(mx + wt)) have forcing terms of order c2S-2 for both the salinity and temperature 
parts. The leading-order equations are 

d V  U! - 2  (iw,, , + 7m2) Xi, - 2  - im@i,-2 f’(x) - ( 1  -7) 3.-2 = - io2, -2S:, , + im@i,o -. dx dx 
(2.19c) 

We apply the solvability condition to  these equations and obtain the criterion for the 
existence of a solution to  these equations : 

0 = iw2,-2 fi m2 && + ?q,, +L?Xi,, dx 

(2.20) 



536 0. S. Kerr 

0.01 0.1 1 .o 10.0 100.0 
U 

l ’ O K  

O’I i- 

0.001 I 
0.01 0.1 1 .o 10.0 100.0 

ff 

FIGURE 1. (a) Contours of Q2, -2  for values of (7 between 0.01 and 100, and for values of T between 
0.001 and 1. The contour levels range from -20000 to -75000 in steps of 5000. (b) Contours of 
wg,-g for values of CT between 0.01 and 100, and for values of 7 between 0.001 and 1. The contour 
levels range from - 0.1 to - 1.3 in steps of 0.1. 

We take the real and imaginary parts of this equation and solve the resultant 
simultaneous equations. Unlike the previous order this yields non-zero values for the 
perturbations to Q and w ,  the calculated values of which for u = 7 and 7 = 1/80 are 

&2,-2 = -71,010, o ~ , - ~  = -0.1967. (2.21a, b)  

The values of Q 2 , - 2  and w2,+ for values o fu  between 0.01 and 100 and for 7 between 
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0.001 and 1 are shown in figure 1. The contours of constant Q"--" and w2, -2  both show 
a symmetry about the line u = 7. It was found in I that, owing to the symmetry of 
the differential equation for @ to the interchange of g and 7, Qo,o, wo,o and qko,oAare 
unchanged if the values of u and 7 are iFterchanged. This is also the case for qk. If 
(2 .20)  is re-expressed in terms of @ and $ and multiplied by a factor of (iw0,,+7m2) 
then this equation can also be arranged to reflect this a/? symmetry, and hence Q2,-2 
and w2v-2 are also unchanged if the values of u and 7 are interchanged. The physical 
significance of this symmetry is not understood. 

We now have expressions for Q and w of the form 

and 

( 2 . 2 2 ~ )  

(2.22b) 

To derive these expression we have assumed that both E and IS  are small, but this does 
not tell us anything about the size of ~ ~ 6 ~ .  Examining how the various terms that 
give rise to  the negative powers of IS  interact tells us that each factor of cY2 is 
associated with a factor of e2. For the resulting expansion to  give an asymptotic series 
we must require that 

€ 2 6 2  4 1. (2.23) 

From the quasi-static assumption of I we have the requirement that the value of 
Q should differ from the critical value by an amount much greater than O(IS2), hence 

Q-Qcrit = O ( C ~ & - ~ )  4 S2, (2 .24)  

and so we require €2 4 84. (2 .25)  

These two requirements can be combined to give the condition for this weakly 
nonlinear asymptotic analysis to be valid that 

IS4 4 € 2  4 82. (2 .26)  

From this we can see that for a given small S there is a range of values of for which 
the asymptotic expansion is valid. 

The values of the perturbation to Q are negative for all the values of ~7 and 7 
investigated. This implies that we have found solutions to the nonlinear equations 
that exist for values of Q less than the critical value of Q found by the linear analysis 
of I. Since the system is stable to infinitesimal disturbances for values of Q less than 
that of the bifurcation point Qcritr and unstable for larger values of Q, the subcritical 
branch of solutions that has been found will itself be unstable. Hencc in reality these 
steady, finite-amplitude solutions near the bifurcation point would not be observed. 
If i t  were possible to observe them for values of Q close to the Qcrit then small- 
amplitude solutions would exist that, to a good approximation, looked like the linear 
solutions. However, the linear results have counter-rotating convection cells, and 
experiments have only revealed cells that all rotate in the same direction. These 
observations suggest that any branch of steady, finite-amplitude solutions near the 
bifurcation point should indeed be unstable. However, this branch of unstable 
solutions may become stable for larger amplitudes than the weakly nonlinear 
analysis can access. If this is the case then the form of the deviation of the solutions 
from the linear solution of I may give an indication of what would be observed in a 
large-amplitude disturbance. 

The perturbations to both the temperature and the salinity are dominated by the 
z-independent terms. In  the regime for which this analysis is valid these perturbations 
are larger in magnitude than the first-order convection cells that  cause them. A plot 
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FIGURE 2. Graph of the leading-order z-independent temperature perturbation, c, 
function of the distance from the wall for the case u = 7 and 7 = 1/80, 

- 2 ,  as a 

FIGURE 3. The streamlines for a weakly nonlinear disturbance near to the critical value of Q ; here 
e2 = 0.1, CT = 7 and 7 = 1/80. These show that the convection cells with fluid rising near the wall 
are enhanced, while the other cells are diminished. This solution is unstable and would not be 
observed. 

of q, -2  against x is shown in figure 2. There is a decrease in the temperature near the 
wall and an increase further away. This is to be expected since any convection would 
be expected to increase the flux of heat away from the wall, thus heating up the 
distant fluid more than would be the case for the purely conducting background 
state. This enhanced heat flux caused by the convection will require a greater flux of 
heat from the wall itself, At the wall the flux is due only to conduction and so there 
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FIGURE 4. Numerical solution of (2.2) for the case Q = 79000, 8 = 0.2 and m = 6.244. The plots 
show contours of (a )  the stream function, ( b )  the temperature perturbation, and ( c )  the salinity 
perturbation with contour intervals of ( a )  0.04, (b )  0.008 and ( c )  0.04. The negative contours are 
dashed. Superimposed on ( b )  and ( e )  are the streamlines. These are plotted with two periods in the 
vertical, an interval of height approximately 2, and with z ranging from 0 to 6. To rescale to 
physical lengths would require the plots to be stretched horizontally by a factor of approximately 
15. 

must be an enhanced temperature gradient there. This requires the presence of an 
area with a negative temperature perturbation close to the wall. 

The z-independent perturbation to the stream function is positive in the region 
near the wall where the convection cells are strongest. Hence the convection cells 
that have the fluid rising near the wall are enhanced, while the others are diminished 
(see figure 3). If this trend continues for the larger-amplitude solutions then the cells 
with fluid rising near the wall may eventually swallow up the counter-rotating cells. 
This would fit in with the experimental observations where only cells with fluid rising 
near the wall are observed. 

The value of w2,+  is negative, and so the phase velocity of the convection cells 
decreases as their amplitude increases. This trend, if continued for large-amplitude 

i n  FLM 217 
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solutions to the full equations, may result in the cells slowing down significantly. This 
could account for the lack of any reported observation of vertical movement in the 
experimental disturbances. 

Although this analysis cannot tell us about large-scale disturbances to the 
background state, it  does give indications of the form that they might take. To find 
large-amplitude solutions it is necessary to solve the complete set of equations (2.2). 
This is outside the scope of this paper, although the numerical results of Kerr (1987) 
do support the trends postulated above for fully developed disturbances. A typical 
numerical result is shown in figure 4. This result is obtained using a numerical scheme 
that expresses the solutions as Fourier series in the vertical, with an imposed 
periodicity, and uses a finite-difference scheme for the x-dependency. This example 
was calculated for c = 7, r = 1/80, m = 6.244 and 6 = 0.2. The heating in this 
example was subcritical, using a value of Q of 79000, around half the critical value 
for infinitesimal disturbances. In this solution the angular frequency of the 
instabilities was w = 0.137, a value that is only about 22% of the critical value 
calculated in the linear analysis of I. In this solution the convection cells, figure 4(a), 
that have the fluid rising at the wall are much larger than the counter-rotating cells, 
which have almost vanished. The temperature perturbation, figure 4 (b), shows that 
the dominant feature is a negative perturbation near the wall, with a corresponding 
rise in the mean temperature perturbation further away from the wall. This 
temperature perturbation had a relatively weak vertical variation, as may be 
anticipated from the weakly nonlinear analysis. The salinity perturbation, figure 
4(e), has a stronger periodic element and for this valuc of 6 the z-independent 
variation does not dominate. All these features conform with the indications from the 
weakly nonlinear analysis. Further details can be found in Kerr (1987). 

3. Energy stability analysis 
In  the previous section we demonstrated that the bifurcation from the stable 

solution is subcritical and so finite-amplitude solutions can exist for values of Q less 
than the critical value found for infinitesimal disturbances in I. In  this section we use 
energy stability theory (cf. Joseph 1976a, b) to examine the stability of the 
background state to finite-amplitude disturbances. This method enables us to find a 
lower bound for the value of Q below which disturbances in some sense die away. The 
first part of this analysis follows a similar course to the analysis of the steady thermal 
boundary layer that occurs when a vertical temperature gradient is heated at  a single 
vertical sidewall (Dudis & Davis 1971 ; and Joseph 19766, pp. 29-33). We take the 
full equations for perturbations to the background flow and non-dimensionalize them 
with respect to the following quantities : 

T with respect to AT, ( 3 . 1 ~ )  

8 with respect to aAT/P, (3.1b) 

x with respect to h* = aAT/( -PS,), ( 3 . 1 ~ )  

t with respect t o  h*2/K,, (3.ld) 

u with respect to KT/h*, (3 . l e )  

p with respect to p o K & / h * 2 .  (3.1.f) 
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These non-dimensionalizations differ from those used in I and $2.  The resulting non- 
dimensional equations are 

aU -+ u -  wu + 0. vu+ u -  w u = - v p +  W ( T - X ) i +  aV2u, ( 3 . 2 ~ )  
at 

( 3 . 2 ~ )  

w.u = 0, (3.2d) 

as - + u - w s +  u ~ w s + u ~ v s =  rv2s, 
at 

where the background state is given by 

u = ( O , O ,  V(w, t ) ) ,  (3.3a) 

!T = f ( x ,  t ) ,  (3.3b) 

S = f ( x , t ) - 2 .  (3 .34 

The Prandtl number, u, and the salt/heat diffusivity ratio, 7 ,  are defined as before. 
The new non-dimensional number to appear here is 

The boundary conditions imposed on the perturbations are 

(3.5a) u = O ,  T=O, - = 0  a tx=O,  

and u+O, T+O, S+O asx+co. (3.5b) 

In this analysis the perturbations to the background state are restricted to those 
whose maximum amplitudes are bounded in the whole fluid region and which are 
absolutely integrable on 0 < x < CO. We define the average of a quantity over y and 

A(x, t )  = lim - ( 3 . 6 ~ )  

a s  
ax 

2 by 

K, L->m 

and the brackets ( ) by 

( A )  = X(x, t )  dx. r (3.63) 

Taking products of (3.3a-c) with u,  T and S as appropriate and finding their 
averages we obtain, after and substituting for 0, T and S, 

d 
= ~ ( T w - S W ) - - ~ ( ~ V U ( ~ ) ,  ( 3 . 7 ~ )  

(3.7b) 
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dt 

a - ( T 8 )  + (T+S)  u- f ( z ,  t ) )  - ( T w )  
dt ( ax 

= -T(lVSl”>, (3.7c) 

=-( l+T) (VT .VS) .  (3.7d) 

Taking the sum of these, with (3 .7bd)  multiplied by weightings A,, hc and Ad 

- = 3 - B  (3 .8a)  
d& 

respectively, we obtain 

dt 

where & = (#U12 h,$!P Ac$S2 + h d  TS), (3.86) 

9 = ( ( T I V U ~ ~ +  AblVTI2 + A , T ~ V X ~ ~  +Ad(  1 + T )  V T - V S ) .  ( 3 . 8 4  

The values of h b ,  h, and h d  are chosen so that both & and 9 are always positive 
definite. 

If we have the condition, over the set of all admissible functions u, T and S ,  that 

sup{;} < A  < 1, 

where A is some constant, then 
d& 
dt 

-- < - ( l - A ) 9 .  

(3.9) 

(3.10) 

As Dudis & Davis (1971) demonstrated, since the fluid region is unbounded there is 
no relationshir, of the form 

(3.1 1)  

or its vector equivalent. Since this supremum is infinite, even if (3.10) holds we 
cannot show that & + O  as t +a. However, they demonstrated that the disturbance 
vorticity will dccay to 0 for large time. Dudis & Davis then went on to show that, 
although this does not imply that &-to, the energy of the disturbance contained 
between the wall and some arbitrary fixed distance from the wall will decay to 0, and 
so the energy of a perturbation is dispersed over an ever increasing volume. 

The analysis of Dudis & Davis can be adapted to  the situation under consideration 
here to provide a bound of the form (3.9). For the error-function temperature profile 
and the associated large-time salinity profile and upwelling, the background state 
can be shown to be stable to arbitrary disturbances if 

&(I-7) 
2.2283 + 1.4903 < 1, 

28*?6(U7)1 
(3.12) 

where S* = h*/l (3.13) 

is the ratio of the lengthscale h* to  the thermal diffusion lengthscale, I = ( ~ ~ t ) i .  The 
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details of this analysis are presented in the document held in the Journal of Fluid 
Mechanics office and obtainable from there on request. Expressing this in terms of Q 
and the original definition of 6 used in I and $ 2  we obtain the condition, for small 6, 
that  the fluid is stable to  all disturbances of arbitrary amplitude if 

4x64 1 62.2283 ' < (1--7)2 (1.4903)* 
(3.14) 

Up to  equation (3.13) in this analysis the only assumption we have made is that 
the background state is that found by the large-time asymptotics of $ 2  of I. In  
rearranging this equation to derive (3.14) we have used the assumption inherent in 
the analysis of the linear instabilities in I and in the weakly nonlinear analysis of $ 2  
that  6 is small. In  this case this result tells us that that background state is absolutely 
stable if & is less than an order-one number multiplied by 64, a very small parameter. 
When this is compared to the linear theory which predicts instabilities in the small- 
6 limit when Q is over about 148000 for the case of a gradient of common salt in water 
we see that this is a very weak result. However, it does tell us that the unstable 
subcritical branch of solutions found in $ 2  ceases to exist for sufficiently small 
positive values of &. 

If the Euler-Lagrange equations for the full maximization problem are derived it 
is found that any terms relating to the salinity stratification are absent. For small 
values of 6 this stratification is responsible for limiting the vertical lengthscale of the 
instabilities to a scale much less than the thickness of the thermal layer. This results 
in the dissipative effects in this analysis taking place over the lengthscale of the width 
of the thermal layer, 1, and not over the typical lengthscales determined by the 
salinity gradient. In the analysis of Dudis & Davis this did not weaken their results 
as this is also an appropriate lengthscale for the instabilities observed when a 
temperature gradient is heated from a sidewall. To overcome this limitation, which 
inhibits the usefulness of the results, we look for some additional restriction in order 
to improve this bound. 

I n  experiments the instabilities are observed to be thin, almost horizontal 
convection cells with a vertical lengthscale of order h* = (aAT)/(  -PS,). In the 
experiments of Chen et al. (1971) the thickest cells that they observed in their 
investigations into marginal stability had thickness 0.973h*. I n  the experiments of 
Huppert & Turner (1980) where they applied lateral heating and cooling to a vertical 
salinity gradient as well as melting blocks of ice submerged in a salinity gradient they 
found that the thickness of the layers was a t  most 0.89h* for a case relatively close 
to marginal stability, but for strongly supercritical heating or cooling the thickness 
was more typically about 0.65h*. The experiments of Huppert & Josberger (1980) on 
melting blocks of ice in a vertical salinity gradient had a maximum layer thickness 
of 0.85h*. In  none of these experiments was there a case with a layer thickness greater 
than h*. 

Since the instabilities tend to  be almost periodic in the vertical we can adapt the 
previous analysis by introducing a further restriction on the allowed disturbances by 
only considering disturbances that are periodic in the vertical, with a period of Az. 
Thus 

(u, T, 8) (2, y, z + Az, t )  = (u, T, 8) (x, y, 2, t ) .  (3.15) 

We split u, T and S into parts that are independent of x and y and parts that have 
zero mean value when averaged over the vertical. We define 

u = up(x, y ,  2, t )  +ui(x, t ) ,  ( 3 . 1 6 ~ )  
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where (3.16b) 

with similar definitions for T,, %,Xi and S,. As with the previous analysis we are 
again been required to choose values of A, and A, to remove the (Tw) and (Sw) 
terms from 9, as these terms lead to an unbounded supremum. We can then show 
that 

(3.17) 

and so 9 is independent of the mean part of the disturbances. This enables us to use 
the inequalities that for any quantity A ,  with period Az in the vertical and no mean 
part 

(3.18) 

We can use this inequality to adapt the previous analysis, and obtain the result 
that the fluid is stable to arbitrary disturbances of vertical periodicity Az if 

(3.19) 

Again the details of this analysis are available in the document held in the Journal 
of Fluid Mechanics ofice and obtainable from there on request. Re-expressing this in 
terms of Q and 6, we find the condition that the background state is stable to 
arbitrary periodic disturbances of vertical period Az if 

(3.20) 

for small values of 6. 
As mentioned previously, the experiments of Chen et al. (1971), Huppert & 

Josberger (1980) and Huppert & Turner (1980) always found that Az < 1.  If we use 
this value then we get the condition that the fluid is stable to periodic disturbances 
with period less that the vertical lengthscale of Chen et al. 

Q < 6 4 ~ 5 ( 1 - ~ ) 4 { 1 - 0 ( 6 3 ) }  x 19585 ( l - ~ ) ~ .  (3.21) 

This result is much stronger than the previous result. It shows that subcritical 
instabilities can only exist for values of Q down to about an eighth of the value for 
marginal stability. In  experiments with wall heating of the form of Chen et al., where 
the wall temperature gradually rises to its final temperature, the instantaneous value 
of Q decays like t-' after the wall temperature reaches its final level. From this we can 
see that even if the fluid does become unstable then the value of Q will decrease until 
it eventually falls below the bound given by (3.21). When this occurs periodic 
disturbances may still be visible; however, they will be decaying. Owing to the low 
diffusivity of salt the last vestiges of these instabilities may exist for some time. For 
experiments during which the instantaneous value of Q becomes much greater than 
that required for instability, observations have shown that the layer thickness will 
typically be of order 0.65h* and not h*. If this is used in (3.20) then, as it depends 
on A z - ~ ,  the bound will be improved by a factor of around 4. This could indicate an 
earlier onset of the decay of the periodic disturbances. 

The restriction obtained on the existence of subcritical instabilities can also be 
used for comparison with numerical results for nonlinear disturbances with an 
imposed vertical periodicity (cf. Kerr 1987). 
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It should be noted again that there is, as yet, no theoretical justification for 
restricting the disturbances to a vertical periodicity of Az < 1, or any other value. 
This limit for the vertical lengthscale is used because all the reported experiments 
satisfy this criterion. For fluids with Prandtl number (T 4 1,  and r of a similar size, 
the linear theory of I predicts that  the fastest growing mode has a vertical periodicity 
of Ax z 1;. For such fluids the restriction on the periodicity would have to be 
weakened, with a corresponding weakening of the condition (3.21). 

4. Conclusion 
I n  I the linear stability of a body of water with a vertical salinity gradient heated 

from a vertical sidewall was investigated for the case where the salinity gradient was 
strong. Although it predicted the onset of the instabilities in good agreement with 
experiments of Chen et al. (1971) and of Tanny & Tsinober (1988), i t  was unable to 
give the correct form of the observed convection cells. By its very nature the linear 
stability analysis predicts counter-rotating convection cells. In  this paper we have 
investigated some of the nonlinear aspects of these instabilities in order to gain an 
insight into why counter-rotating cells are not observed, and to investigate some of 
the properties of the instabilities that would be observed. 

First, the weakly nonlinear analysis showed that the bifurcation from stability was 
subcritical for the large range of values of c and r investigated, and so the form of 
the observed instabilities would not necessarily be similar to the form of the linear 
disturbances predicted at  marginal stability. Although we cannot show that the 
subcritical branch of instabilities that bifurcates from the point of marginal linear 
stability is connected to any branch of solutions corresponding to instabilities 
observed in the experiments, we find that the perturbations to the linear stability 
solution show an enhancement of the convection cells that have the fluid rising near 
the wall and sinking away from the wall, and a corresponding reduction in the 
strength of the other cells. There was also a reduction in the vertical phase velocity 
of the instabilities. If these trends continued along the unstable subcritical branch of 
solutions, and this branch of solutions eventually became stable a t  some lower value 
of Q ,  then this would be compatible with the observed form of the solutions, with all 
the convection cells having the same direction of rotation. 

This existence of solutions for values of Q less than the critical value predicted by 
the linear theory was investigated further by the use of energy stability analysis. 
This analysis showed that arbitrary disturbances would decay for sufficiently low 
values of Q .  However, the lower limit for the value of Q a t  which instabilities may 
exist was a very weak bound, and not of use in practical applications. If, however, 
the restriction is imposed on the instabilities that they have a vertical periodicity of 
the order of the vertical lengthscale aAT/( -pgz) proposed by Chen et al. (1971) then 
a much stronger result is obtained. This result shows that, for the case of common 
salt, the existence of subcritical solutions is limited to situations where the values of 
Q are greater than approximately an eighth of the value predicted by the linear 
theory for the onset of instability. Below this level previously established convection 
cells would decay. That this strengthened result produces a limit that is independent, 
to leading order, of 6 can be anticipated from the mechanistic argument used in I to 
determine the form of the non-dimensional number that controls the stabilit,y of the 
flow. This argument also holds for finite-amplitude disturbances, and so Q would be 
expected to  be the relevant parameter used in a criterion for the existence of 
subcritical disturbances. 



546 0. 8. Kerr 

The usefulness of this result can be seen by considering a situation where the 
sidewall of a salinity gradient is heated or cooled in such a way that the temperature 
difference between the wall is restricted to be below a certain level. Any instabilities 
would be limited in their vertical extent by the lengthscale proposed by Chen et al. 
However, the horizontal extent of the temperature field’s penetration into the bulk 
of the fluid will continuously grow. The non-dimensional number Q is similar to a 
Rayleigh number, but instead of being proportional to a single lengthscale cubed it 
is proportional to the fifth power of the vertical lengthscale divided by the square of 
the horizontal lengthscale. From this we can see that in many real situations the 
inst,antaneous value of Q will be continually declining, and as such we can use this 
result to provide a limit for the existence of active convection a t  the sidewall due to 
double-diffusive processes. 

The energy stability analysis can be adapted to give similar results in the case of 
heating a salinity gradient in a vertical slot studied by Hart  (1973). 
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